COT 6405 Introduction to Theory of Algorithms

Topic 16. Single source shortest path

Problem definition

- Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v
- "Shortest-path" -> Weight of the path is minimum
- Weight of a path is the sum of the weight of edges
- E.g., a road map: what is the shortest path from USF ENB to USF water tower?

Formal definition

- $\mathbf{W}(p)$, Weight of path $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$
- $\mathbf{W}(\boldsymbol{p})=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$
$=$ sum of edge weights on path p
- Shortest-path weight, $\delta(u, v)$, from u to v

$$
\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if there exists a path } u \leadsto v, \\ \infty & \text { otherwise. }\end{cases}
$$

Shortest path u to v is any path p such that $w(p)=\delta(u, v)$.

Example: shortest paths from s [d values appear inside vertices. Shaded edges show shortest paths.]

- This example shows that the shortest path might not be unique
- It also shows that when we look at shortest paths from one vertex to all other vertices, the shortest paths are organized as a tree.

Single source shortest path

- We can think of weights as representing any measure that
- accumulates linearly along a path
- we want to minimize
- Examples: time, cost, penalties, loss.
- We can use the breadth-first search to find shortest paths for un-weighted graphs

Variants can be solved by SSSP

- Single-source: Find shortest paths from a given source vertex $s \in V$ to every vertex $v \in V$.
- Single-destination: Find shortest paths to a given destination vertex.
- Single-pair: Find shortest path from u to v.
- All-pairs: Find shortest path from u to v for all $u, v \in V$.

Shortest path properties: optimal

Lemma
Ary subpath of a shortest path is a shortest path.
Proof Cut-and-paste.

Suppose this path p is a shortest path from u to v.
Then $\delta(u, v)=w(p)=w\left(p_{u x}\right)+w\left(p_{x y}\right)+w\left(p_{y v}\right)$.
Now suppose there exists a shorterpath $x \stackrel{p_{x y}^{\prime} y}{x} y$.
Then $w\left(p_{x y}^{\prime}\right)<w\left(p_{x y}\right)$.
Construct p^{\prime} :

Cont'd

Then

$$
\begin{aligned}
w\left(p^{\prime}\right) & =w\left(p_{u x}\right)+w\left(p_{x y}^{\prime}\right)+w\left(p_{y v}\right) \\
& <w\left(p_{u x}\right)+w\left(p_{x y}\right)+w\left(p_{y v}\right) \\
& =w(p) .
\end{aligned}
$$

Contradicts the assumption that p is a shortest path.

Shortest path properties

- In graphs with negative weight cycles, some shortest paths will not exist:
- No shortest path from sto e: (s,e), (s,e,f,e), ...

Negative-weight edges

- Negative weight edges are ok for some cases
- as long as no negative-weight cycles are reachable from the source
- If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v)=-\infty$ for all v on the cycle.
- Some algorithms work only if there are no negativeweight edges in the graph.
- Dijkstra algorithm works on nonnegative weights
- We'll be clear when they're allowed and not allowed
- Normally, we assume nonnegative weights

Cycles

- Shortest paths cannot contain cycles:
- We already ruled out negative-weight cycles
- Positive-weight cycle \Rightarrow Removing the cycle will give us a path with less weight
- Zero-weight cycle: no reason to use them \Rightarrow assume that our solutions won't use them.

Output of SSSP algorithm

- For each vertex $v \in V, v . d=\delta(s, v)$
- Initially, v.d $=\infty$
- Reduces as algorithms progress. But always maintain v. $d \geq \delta(s, v)$
- Call v.d a shortest-path estimate
- $\pi[v]=$ predecessor of v on a shortest path from s
- If no predecessor, $\pi[v]=$ NIL.
$-\pi$ induces a tree: shortest-path tree.

Initialization

- All the shortest-paths algorithms start with INIT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)
for each vertex $v \in G . V$

$$
\begin{aligned}
& \mathrm{v} . \mathrm{d}=\infty \\
& v . \pi=\mathrm{NIL} \\
& \text { s. } d=0
\end{aligned}
$$

Initialization

- For all the single-source shortest-paths algorithms we'll look at,
- start by calling INIT-SINGLE-SOURCE,
- then relax edges by decreasing the path weight if possible
- The algorithms differ in the order and how many times they relax each edge.

Relaxation: reach v by u

Relax (u, v, w) \{

$$
\begin{aligned}
& \text { if }(v . d>u \cdot d+w(u, v)) \\
& \quad v . d=u \cdot d+w(u, v) \\
& \quad v . \pi=u
\end{aligned}
$$

\}

Properties of shortest paths

- Triangle inequality

For all $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u)+w(u, v)$.
Proof Weight of shortest path $s \leadsto v$ is \leq weight of any path $s \leadsto v$. Path $s \leadsto u \rightarrow v$ is a path $s \leadsto v$, and if we use a shortest path $s \leadsto u$, its weight is $\delta(s, u)+w(u, v)$.

Upper-bound property

- Always have v.d $\geq \delta(s, v)$
- Once v.d $=\delta(s, v)$, it never changes
- Proof: Initially, it is true: v.d = ∞
- Supposed v.d < $\delta(\mathrm{s}, \mathrm{v})$
- Without loss of generality, v is the first vertex for this happens
- Let u be the vertex that causes v.d to change
- Then v.d = u.d + w(u,v)
- So, v.d $<\delta(s, v) \leq \delta(s, u)+w(u, v)<u . d+w(u, v)$
- Then v.d < u.d + w(u,v)
- Contradict to v.d $=u . d+w(u, v)$

No-path property

- If $\delta(s, v)=\infty$, then $v . d=\infty$ always
- Proof: v.d $\geq \delta(s, v)=\infty \rightarrow$ v.d $=\infty$

Convergence property

If $s \leadsto u \rightarrow v$ is a shortest path, $u . \mathrm{d}=\delta(s, u)$, and we call $\operatorname{RELAX}(u, v, w)$, then $\nu . \mathbf{d}=\delta(s, v)$ afterward.

Proof After relaxation:

$$
\begin{aligned}
v . \mathbf{d} & \leq u . \mathbf{d}+w(u, v) \quad \text { (RELAX code) } \\
& =\delta(s, u)+w(u, v) \\
& =\delta(s, v) \quad \text { (lemma-optimal substructure) }
\end{aligned}
$$

Since $v . d \geq \delta(s, v)$, must have $v . d=\delta(s, v)$.

Path relaxation property

Let $p=\left\langle\nu_{0}, \nu_{1}, \ldots, \nu_{k}\right\rangle$ be a shortest path from $s=\nu_{0}$ to ν_{k}. If we relax, in order, $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$, even intermixed with other relaxations, then $v_{k} \cdot \mathbf{d}=\delta\left(s, v_{k}\right)$.

Proof Induction to show that $v_{i} \mathbf{~} \mathbf{d}=\delta\left(s, v_{i}\right)$ after $\left(v_{i-1}, v_{i}\right)$ is relaxed Basis: $i=0$. Initially, $v_{0} . \mathbf{d}=0=\delta\left(s, v_{0}\right)=\delta(s, s)$.
Inductive step: Assume $v_{i-1} \cdot \mathbf{d}=\delta\left(s, v_{i-1}\right)$. Relax $\left(v_{i-1}, v_{i}\right)$. By convengence property, $v_{i} . \mathbf{d}=\delta\left(s, v_{i}\right)$ afterward and $v_{i} . \mathrm{d}$ never changes.

Bellman-Ford Algorithm

- Allows negative-weight edges.
- Computes v.d and v. π for all $v \in V$.
- Returns
- TRUE, if no negative-weight cycles reachable from s;
- FALSE, otherwise.

Bellman-Ford algorithm

BellmanFord (G, w, s)
INIT-SINGLE-SOURCE(G, s)

$$
\text { for } i=1 \text { to }|G . V|-1
$$

for each edge (uv) $\in G . E$
Relaxation:
Make |V|-1 passes, relaxing each edge Relax (u, v, w) ;
for each edge $(u, v) \in G . E\}$ Test for solution if (v.d>u.d +w(u,v)) \} return "no solution";

Relax (u,v,w): if (v.d > us + w (ur))

$$
v . d=u \cdot d+w(u, v)
$$

Bellman-Ford Algorithm

BellmanFord (G, w, s)
INIT-SINGLE-SOURCE(G, s)
for $i=1$ to $|G . V|-1$
for each edge (u,v) G G.E

$$
\operatorname{Relax}(u, v, w) ;
$$

What will be the running time?

A: O(VE)
for each edge (u,v) \in GiE

$$
\begin{aligned}
& \text { if } \quad(\mathrm{v} . \mathrm{d}>\mathrm{u} . \mathrm{d}+\mathrm{w}(\mathrm{u}, \mathrm{v})) \\
& \text { return "no solution"; }
\end{aligned}
$$

Relax (u,v,w): if (v.d > us $+w(u, v)$)

$$
\mathrm{v} \cdot \mathrm{~d}=\mathrm{u} \cdot \mathrm{~d}+\mathrm{w}(\mathrm{u}, \mathrm{v})
$$

Example

- (t, x), ($\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x})$,
$(y, z),(z, x),(z, s),(s, t),(s, y)$

	d_{s}	d_{t}	d_{x}	d_{y}	d_{z}
inital	0	∞	∞	∞	∞
After Pass 1					
After Pass 2					
After Pass 3					
After Pass 4					

Pass 1

- (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

- (t,x), (t,y), (t,z), (x,t), (y,x), (y,z),
$(z, x),(z, s),(s, t),(s, y)$

	d_{s}	d_{t}	d_{x}	d_{y}	d_{z}
inital	0	∞	∞	∞	∞
After Pass 1	0	$6, s$	∞	$7, \mathrm{~s}$	∞
After Pass 2	0				
After Pass 3	0				
After Pass 4	0				

Pass 2

- (t, x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

$(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z})$, (z, x), (z, s), ($\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})$

	d_{s}	d_{t}	d_{x}	d_{y}	d_{z}
inital	0	∞	∞	∞	∞
After Pass 1	0	$6, \mathrm{~s}$	∞	$7, \mathrm{~s}$	∞
After Pass 2	0	$6, \mathrm{~s}$	$4, \mathrm{y}$	$7, \mathrm{~s}$	$2, \mathrm{t}$
After Pass 3					
After Pass 4					

Pass 3

- (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

$$
\begin{aligned}
& (\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}), \\
& (\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{~s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})
\end{aligned}
$$

Pass 4

- (t, x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t),(s,y)

Example

$(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z})$,
(z, x), (z, s), ($\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})$

	d_{s}	d_{t}	d_{x}	d_{y}	d_{z}
inital	0	∞	∞	∞	∞
After Pass 1	0	$6, \mathrm{~s}$	∞	$7, \mathrm{~s}$	∞
After Pass 2	0	$6, \mathrm{~s}$	$4, \mathrm{y}$	$7, \mathrm{~s}$	$2, \mathrm{t}$
After Pass 3	0	$2, \mathrm{x}$	$4, \mathrm{y}$	$7, \mathrm{~s}$	$2, \mathrm{t}$
After Pass 4	0	$2, \mathrm{x}$	$4, \mathrm{y}$	$7, \mathrm{~s}$	$-2, \mathrm{t}$

Running time

- Initialization: $\Theta(\mathrm{V})$
- Line 2-4: $\Theta(E)$ * $|\mathrm{V}|-1$ passes
- Line 5-7 : O(E)
- O(VE)

Correctness

Proof Use path-relaxation property.
Let v be reachable from s, and let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be a shortest path from s to v, where $v_{0}=s$ and $v_{k}=v$. Since p is acyclic, it has $\leq|V|-1$ edges, so $k \leq|V|-1$.
Each iteration of the for loop relaxes all edges:

- First iteration relaxes $\left(v_{0}, v_{1}\right)$.
- Second iteration relaxes $\left(v_{1}, v_{2}\right)$.
- k th iteration relaxes $\left(v_{k-1}, v_{k}\right)$.

By the path-relaxation property, v. $\mathbf{d}=v_{k} . \mathbf{d}=\delta\left(s, v_{k}\right)=\delta(s, v)$.

Correctness

How about the TRUE/FALSE retum value?

- Suppose there is no negative- weight cy cle reachable from s. At termination, for all $(u, v) \in E$, $\nu . \mathbf{d}^{=} \delta(s, v)$
$\leq \delta(s, u)+w(u, v) \quad$ (triangle inequality)
$=u . \mathbf{d}+w(u, v)$.
So Bellman-Ford returns true.

Now suppose there exists negative-weight cycle $c=\left\langle\nu_{0}, \nu_{1}, \ldots, v_{k}\right\rangle$, where $\nu_{0}=v_{k}$, reachable from s.
Then $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0$
Suppose (for contradiction) that BELLMAN-FORD returns TRUE.
Then $v_{i} . \mathbf{d} \leq v_{i-1} . \mathbf{d}+w\left(v_{i-1}, v_{i}\right)$ for $i=1,2, \ldots, k$.
Sum around c :
$\begin{aligned} \sum_{i=1}^{k} v_{i} . \mathbf{d} & \leq \sum_{i=1}^{k}\left(v_{i-1} . \mathbf{d}+w\left(v_{i-1}, v_{i}\right)\right) \\ & =\sum_{i=1}^{k} v_{i-1} \cdot \mathbf{d}+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)\end{aligned}$

The contradiction

- $\sum_{i=1}^{k} v_{i} \cdot d \leq \sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$
- =>
$\sum_{i=1}^{k} v_{i} . d-\sum_{i=1}^{k} v_{i-1} . d \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$
- $=>\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \geq v_{k} . d-v_{0} . d$
- Since $v_{0}=v_{k}$ (c is a cycle),
- $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \geq 0$
- This contradicts c being a negative-weight cycle

Dijkstra’s Algorithm

- If no negative edge weights, we can beat Bellman Ford
- Similar to breadth-first search
- Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST
- Use a priority queue keyed on v.d

Dijkstra’s Algorithm

- Assumes no negative-weight edges.
- Maintains a vertex set S whose shortest path from s has been determined.
- Repeatedly selects u in V-S with minimum Shortest Path estimate (greedy choice).
- Store V-S in priority queue Q.

```
DIJKSTRA(G, w, s)
Initialize-SINGLE-SOURCE(G, s);
S = \varnothing;
Q = G.V;
while Q = \varnothing
    u = Extract-Min(Q);
    S = S}\cup{u}
    for each v }\in\mathrm{ G.Adj[u]
    Relax(u, v, w)
```


Example

Example

Example

Example

Example

Example

Dijkstra’s Algorithm

Dijkstra (G)

$$
\begin{aligned}
& \text { for each } v \in V \\
& \qquad \begin{array}{l}
v . d=\infty ; \\
\text { s.d }=0 ; s=\varnothing ; Q=v ; \\
\text { while }(Q \neq \varnothing) \\
u=\text { ExtractMin }(Q) ; \\
S=S U\{u\} ;
\end{array}
\end{aligned}
$$

for each $v \in u->G$.Adj[]

Note: this

$$
\text { if } \left.\begin{array}{c}
(v . d>u . d+w(u, v)) \\
v . d=u . d+w(u, v) ;
\end{array}\right\} \begin{aligned}
& \text { Relay } \\
& \text { Step }
\end{aligned}
$$

Relaxation

Dijkstra's correctness

- We will prove that whenever u is added to S, $u . d=\delta(s, u)$, i.e., that d is minimum, and that equality is maintained thereafter
- Proof
- Note that $\forall v, v . d \geq \delta(s, v)$
- let u be the first vertex for which $u . d \neq \delta(s, u)$ (i.e., u.d $>\delta(s, u))$ when it is added to set S.
- We will show that the assumption of such a vertex leads to a contradiction

Correctness (Cont'd)

- A shortest path p from source s to vertex u can be decomposed into:
$-p_{1} s \rightarrow x$,
$-x \rightarrow y$
$-p_{2}: y \rightarrow u$
- where y is the first vertex on the path that is not in S and $x \in S$ immediately precedes y

Correctness (Cont'd)

- Then, it must be that $y . d=\delta(s, y)$ because
$-X . d$ is set correctly for y 's predecessor $x \in S$ on the shortest path (by choice of u as the first vertex for which d is set incorrectly)
- when the algorithm inserted x into S, it relaxed the edge (x, y), assigning $y . d$ the correct value

Correctness (Cont'd)

- Thus, y.d $=\delta(s, y)$
$\leq \delta(s, u)$ (y appears before u on the shortestpath) su.d (upper-bound property)
But because both u and y are in V-S when u was chosen, we have u.d $\leq y . d$, and therefore the two inequalities are in fact equalities,

$$
y \cdot d=\delta(s, y)=\delta(s, u)=u . d
$$

Consequently, u.d $=\delta(s, u)$, which contradicts our choice of u

Dijkstra's running time

Dijkstra (G)

$$
\text { for each } v \in V
$$

How many times is

$$
v \cdot d=\infty
$$

ExtractMin() called?

$$
s . d=0 ; s=\varnothing ; Q=v
$$

$$
A:|V|
$$

$$
\text { while }(Q \neq \varnothing)
$$

$$
\mathrm{u}=\text { ExtractMin (Q); }
$$

$$
S=S U\{u\}
$$

for each $v \in u->A d j[] \quad A:|E|$
if (v.d >u.d+w (ur))

DecreaseKey (v.d,u.d+w(u,v));
What will be the total running time?

Dijkstra's Running Time

- Extract-Min executed |V| time
- Decrease-Key executed |E| time
- Time $=|V| T_{\text {Extract-Min }}+|E| T_{\text {Decrease-Key }}$
- Time $=\mathrm{O}(\mathrm{VlgV})+\mathrm{O}(\mathrm{ElgV})=\mathrm{O}(\mathrm{ElgV})$

Summary

- We learned
- Shortest-Path Problems
- Properties of Shortest Paths, Relaxation
- Bellman-Ford Algorithm
- Dijkstra's Algorithm
- Common mistakes: Do not forget to relax all edges in all algorithms.

