COT 6405 Introduction to Theory of Algorithms

Topic 16. Single source shortest path

Problem definition

- Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v
 - "Shortest-path" -> Weight of the path is minimum
 - Weight of a path is the sum of the weight of edges
 - E.g., a road map: what is the shortest path from USF ENB to USF water tower?

Formal definition

- **W(p)**, Weight of path $p = (v_0, v_1, ..., v_k)$
- $W(p) = \sum_{i=1}^{n} w(v_{i-1}, v_i)$
 - = sum of edge weights on path p
- Shortest-path weight, $\delta(u, v)$, from u to v

$$\delta(u, v) = \begin{cases} \min \{w(p) : u \stackrel{p}{\rightsquigarrow} v\} & \text{if there exists a path } u \rightsquigarrow v , \\ \infty & \text{otherwise }. \end{cases}$$

Shortest path *u* to *v* is any path *p* such that $w(p) = \delta(u, v)$.

Example: shortest paths from *s*

[d values appear inside vertices. Shaded edges show shortest paths.]

- This example shows that the shortest path might not be unique
- It also shows that when we look at shortest paths from one vertex to all other vertices, the shortest paths are organized as a tree.

Single source shortest path

- We can think of weights as representing any measure that
 - accumulates linearly along a path
 - we want to minimize
- Examples: time, cost, penalties, loss.
- We can use the breadth-first search to find shortest paths for un-weighted graphs

Variants can be solved by SSSP

- Single-source: Find shortest paths from a given source vertex s ∈ V to every vertex v ∈ V.
- *Single-destination:* Find shortest paths to a given destination vertex.
- *Single-pair:* Find shortest path from *u* to *v*.
- All-pairs: Find shortest path from u to v for all u, v ∈ V.

Shortest path properties: optimal Lemma

Any subpath of a shortest path is a shortest path.

Proof Cut-and-paste.

 p_{ux}

 p'_{xy}

Suppose this path *p* is a shortest path from *u* to *v*. Then $\delta(u, v) = w(p) = w(p_{ux}) + w(p_{xy}) + w(p_{yv})$. Now suppose there exists a shorter path $x \stackrel{p'_{xy}}{\leadsto} y$. Then $w(p'_{xy}) < w(p_{xy})$. Construct *p*':

 p_{yv}

Cont'd

The**n**

$$w(p') = w(p_{ux}) + w(p'_{xy}) + w(p_{yv}) < w(p_{ux}) + w(p_{xy}) + w(p_{yv}) = w(p).$$

Contradicts the assumption that *p* is a shortest path.

Shortest path properties

 In graphs with negative weight cycles, some shortest paths will not exist:

- No shortest path from s to e: (s,e), (s,e,f,e), ...

Negative-weight edges

- Negative weight edges are ok for some cases
 - as long as no negative-weight cycles are reachable from the source
 - If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle.
- Some algorithms work only if there are no negativeweight edges in the graph.
 - Dijkstra algorithm works on nonnegative weights
 - We'll be clear when they're allowed and not allowed
- Normally, we assume nonnegative weights

Cycles

- Shortest paths cannot contain cycles:
 - We already ruled out negative-weight cycles
 - Positive-weight cycle ⇒ Removing the cycle will give us a path with less weight
 - Zero-weight cycle: no reason to use them ⇒ assume that our solutions won't use them.

Output of SSSP algorithm

- For each vertex $v \in V$, $v.d = \delta(s, v)$
 - Initially, v. $d = \infty$
 - Reduces as algorithms progress. But always maintain $v.d \ge \delta(s, v)$
 - Call v.d a shortest-path estimate
- $\pi[v]$ = predecessor of v on a shortest path from s
 - If no predecessor, $\pi[v] = NIL$.
 - $-\pi$ induces a tree: *shortest-path tree*.

Initialization

 All the shortest-paths algorithms start with **INIT-SINGLE-SOURCE** INIT-SINGLE-SOURCE(G, s) **for** each vertex $v \in G.V$ $v.d = \infty$ $v.\pi = \text{NIL}$ s.d = 0

Initialization

- For all the single-source shortest-paths algorithms we'll look at,
 - start by calling INIT-SINGLE-SOURCE,
 - then relax edges by decreasing the path weight if possible
- The algorithms differ in the order and how many times they relax each edge.

Relaxation: reach v by u

Properties of shortest paths

• Triangle inequality

For all $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Proof Weight of shortest path $s \rightsquigarrow v$ is \leq weight of any path $s \rightsquigarrow v$. Path $s \rightsquigarrow u \rightarrow v$ is a path $s \rightsquigarrow v$, and if we use a shortest path $s \rightsquigarrow u$, its weight is $\delta(s, u) + w(u, v)$.

Upper-bound property

- Always have v.d $\geq \delta(s,v)$
 - Once v.d = $\delta(s,v)$, it never changes
- Proof: Initially, it is true: v.d = ∞
- Supposed v.d < $\delta(s,v)$
- Without loss of generality, v is the first vertex for this happens
- Let u be the vertex that causes v.d to change
- Then v.d = u.d + w(u,v)
- So, v.d < $\delta(s,v) \leq \delta(s,u) + w(u,v) < u.d + w(u,v)$
- Then v.d < u.d + w(u,v)
- Contradict to v.d = u.d + w(u,v)

No-path property

- If $\delta(s,v) = \infty$, then v.d = ∞ always
- Proof: v.d $\geq \delta(s,v) = \infty \rightarrow v.d = \infty$

Convergence property

If $s \rightsquigarrow u \rightarrow v$ is a shortest path, $u. d = \delta(s, u)$, and we call R*E*LAX(u, v, w), then $v. d = \delta(s, v)$ afterward.

Proof After relaxation:

 $v. \mathbf{d} \leq u. \mathbf{d} + w(u, v) \quad (RELAX \text{ code})$ = $\delta(s, u) + w(u, v)$ = $\delta(s, v) \quad (\text{lemma-optimal substructure})$

Since ν . $\mathbf{d} \geq \delta(s, \nu)$, must have ν . $\mathbf{d} = \delta(s, \nu)$.

Path relaxation property

Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from $s = v_0$ to v_k . If we relax, in order, $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, even intermixed with other relaxations, then v_k . $\mathbf{d} = \delta(s, v_k)$.

Proof Induction to show that v_i . $\mathbf{d} = \delta(s, v_i)$ after (v_{i-1}, v_i) is relaxed.

Basis: i = 0. Initially, $v_0 \cdot \mathbf{d} = 0 = \delta(s, v_0) = \delta(s, s)$.

Inductive step: Assume v_{i-1} . $\mathbf{d} = \delta(s, v_{i-1})$. Relax (v_{i-1}, v_i) . By convergence property, v_i . $\mathbf{d} = \delta(s, v_i)$ afterward and v_i . \mathbf{d} never changes.

Bellman-Ford Algorithm

- Allows negative-weight edges.
- Computes *v.d* and *v.* π for all $v \in V$.
- Returns
 - TRUE, if no negative-weight cycles reachable from s;
 - FALSE, otherwise.

Bellman-Ford algorithm

Relax(u,v,w): if (v.d > u.d + w(u,v))v.d = u.d + w(u,v)

Bellman-Ford Algorithm

```
BellmanFord(G, w, s)
INIT-SINGLE-SOURCE(G, s)
for i=1 to |G.V|-1
for each edge (u,v) ∈ G.E
Relax(u, v, w);
for each edge (u,v) ∈ G.E
if (v.d > u.d + w(u,v))
return "no solution";
What will be the
running time?
A: O(VE)
```

Relax(u,v,w): if (v.d > u.d + w(u,v))v.d = u.d + w(u,v)

Example

(t,x), (t,y), (t,z), (x,t), (y,x),
 (y,z), (z,x), (z,s), (s,t), (s,y)

	d _s	d _t	d _x	dy	dz
inital	0	∞	∞	00	8
After Pass 1					
After Pass 2					
After Pass 3					
After Pass 4					

Pass 1

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z),
 (z,x), (z,s), (s,t), (s,y)

	d _s	d _t	d _x	dy	dz
inital	0	∞	∞	∞	∞
After Pass 1	0	6,s	8	7,s	8
After Pass 2	0				
After Pass 3	0				
After Pass 4	0				

Pass 2

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

	ds	d _t	d _x	dy	dz
inital	0	8	∞	∞	8
After Pass 1	0	6,s	∞	7,s	8
After Pass 2	0	6,s	4,y	7,s	2,t
After Pass 3					
After Pass 4					

Pass 3

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z),(z,x), (z,s), (s,t), (s,y)

Pass 4

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

	ds	d _t	d _x	dy	dz
inital	0	∞	∞	∞	∞
After Pass 1	0	6,s	∞	7,s	8
After Pass 2	0	6,s	4,y	7,s	2,t
After Pass 3	0	2,x	4,y	7,s	2,t
After Pass 4	0	2,x	4,y	7,s	-2,t

Running time

- Initialization: Θ(V)
- Line 2-4 : Θ(E) * |V|-1 passes
- Line 5-7 : O(E)
- O(VE)

Correctness

Proof Use path-relaxation property.

Let v be reachable from s, and let $p = \langle v_0, v_1, \ldots, v_k \rangle$ be a shortest path from s to v, where $v_0 = s$ and $v_k = v$. Since p is acyclic, it has $\leq |V| - 1$ edges, so $k \leq |V| - 1$.

Each iteration of the for loop relaxes all edges:

- First iteration relaxes (ν_0 , ν_1).
- Second iteration relaxes (ν₁, ν₂).
- k th iteration relaxes (v_{k-1}, v_k) .

By the path-relaxation property, $v \cdot d = v_k \cdot d = \delta(s, v_k) = \delta(s, v)$.

Correctness

How about the TRUE/FALSE return value?

Suppose there is no negative-weight cycle reachable from s.
 At termination, for all (u, v) ∈ E,

$$\begin{aligned}
v \cdot \mathbf{u} &= \delta(s, v) \\
&\leq \delta(s, u) + w(u, v) \quad (\text{triangle inequality}) \\
&= u \cdot \mathbf{d} + w(u, v) .
\end{aligned}$$

So BELLMAN-FORD returns TRUE.

Now suppose there exists negative-weight cycle $c = \langle v_0, v_1, \ldots, v_k \rangle$, where $v_0 = v_k$, reachable from *s*.

Then
$$\sum_{i=1}^{N} w(v_{i-1}, v_i) < 0$$

k

Suppose (for contradiction) that BELLMAN-FORD returns TRUE.

Then
$$v_i$$
. $\mathbf{d} \leq v_{i-1}$. $\mathbf{d} + w(v_{i-1}, v_i)$ for $i = 1, 2, ..., k$.
Sum around c :

$$\sum_{i=1}^{k} v_i \cdot \mathbf{d} \leq \sum_{i=1}^{k} (v_{i-1} \cdot \mathbf{d} + w(v_{i-1}, v_i))$$
$$= \sum_{i=1}^{k} v_{i-1} \cdot \mathbf{d} + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

The contradiction

- $\sum_{i=1}^{k} v_i d \leq \sum_{i=1}^{k} v_{i-1} d + \sum_{i=1}^{k} w(v_{i-1}, v_i)$
- => $\sum_{i=1}^{k} v_i d - \sum_{i=1}^{k} v_{i-1} d \leq \sum_{i=1}^{k} w(v_{i-1}, v_i)$
- => $\sum_{i=1}^{k} w(v_{i-1}, v_i) \ge v_k \cdot d v_0 \cdot d$
- Since $v_0 = v_k$ (c is a cycle),
- $\sum_{i=1}^k w(v_{i-1}, v_i) \ge 0$
- This contradicts c being a negative-weight cycle

Dijkstra's Algorithm

- If no negative edge weights, we can beat Bellman Ford
- Similar to breadth-first search
 - Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST
 Use a priority queue keyed on v.d

Dijkstra's Algorithm

- Assumes no negative-weight edges.
- Maintains a vertex set S whose shortest path from s has been determined.
- Repeatedly selects u in V–S with minimum Shortest Path estimate (greedy choice).
- Store V–S in priority queue Q.

```
DIJKSTRA(G, w, s)

Initialize-SINGLE-SOURCE(G, s);

S = \emptyset;

Q = G.V;

while Q \neq \emptyset

u = Extract-Min(Q);

S = S \cup \{u\};

for each v \in G.Adj[u]

Relax(u, v, w)
```


Dijkstra's Algorithm

```
Dijkstra(G)
        for each v \in V
            \mathbf{v}.\mathbf{d} = \infty;
       s.d = 0; S = \emptyset; Q = V;
       while (Q \neq \emptyset)
            u = ExtractMin(Q);
            S = S U \{u\};
            for each v \in u \rightarrow G.Adj[]
                if (v.d > u.d+w(u,v))
                                                      Relaxation
                                                      Step
                    v.d = u.d + w(u,v);
Note: this
is really a
call to Q->DecreaseKey()
```

Dijkstra's correctness

- We will prove that whenever u is added to S, $u.d = \delta(s,u)$, i.e., that d is minimum, and that equality is maintained thereafter
- Proof
 - Note that $\forall v, v.d \geq \delta(s,v)$
 - let *u* be the first vertex for which $u.d \neq \delta(s, u)$ (i.e., u.d > $\delta(s, u)$) when it is added to set *S*.
 - We will show that the assumption of such a vertex leads to a contradiction

Correctness (Cont'd)

 A shortest path p from source s to vertex u can be decomposed into :

 where y is the first vertex on the path that is not in S and x ∈ S immediately precedes y

Correctness (Cont'd)

- Then, it must be that $y.d = \delta(s,y)$ because
 - X.d is set correctly for y's predecessor $x \in S$ on the shortest path (by choice of u as the first vertex for which d is set incorrectly)
 - when the algorithm inserted x into S, it relaxed the edge (x,y), assigning y.d the correct value

Correctness (Cont'd)

• Thus, $y.d = \delta(s,y)$ $\leq \delta(s,u)$ (y appears before u on the shortestpath) $\leq u.d$ (upper-bound property)

But because both u and y are in V-S when u was chosen, we have u.d \leq y.d, and therefore the two inequalities are in fact equalities,

$$y.d = \delta(s,y) = \delta(s,u) = u.d$$

Consequently, u.d = $\delta(s,u)$, which contradicts our choice of u

Dijkstra's running time

```
Dijkstra(G)
                              How many times is
    for each v \in V
                              ExtractMin() called?
       \mathbf{v}.\mathbf{d} = \infty;
                                     A: |V|
    s.d = 0; S = \emptyset; Q = V;
    while (Q \neq \emptyset)
                               How many times is
       u = ExtractMin(Q);
                               DecreaseKey()called?
       S = S U \{u\};
                                         A: |E|
       for each v \in u->Adj[]
           if (v.d > u.d+w(u,v))
               DecreaseKey(v.d,u.d+w(u,v));
What will be the total running time?
```

Dijkstra's Running Time

- Extract-Min executed |V| time
- Decrease-Key executed |E| time
- Time = |V| T_{Extract-Min} + |E| T_{Decrease-Key}
- Time = O(VlgV) + O(ElgV) = O(ElgV)

Summary

- We learned
 - Shortest-Path Problems
 - Properties of Shortest Paths, Relaxation
 - Bellman-Ford Algorithm
 - Dijkstra's Algorithm
- Common mistakes: Do not forget to relax all edges in all algorithms.